Data Privacy
Hiding Data from the Database User Il



Databases

 Many databases contain sensitive (personal) data

— Hospital records, internet search information, the set of friends
on different social sites, etc.

* |tis a common scenario that the release of a function/
statistic on such data is socially beneficial

— Used for apportioning resources, evaluating medical therapies,
understanding the spread of disease, improving economic utility,

and informing us about ourselves as a species
— E.g., the usage of hospital records greatly helps medical research
* Hard to publish databases in a privacy-preserving way

 Crucial to ensure that the release of a function on a database
does not leak too much information about the individuals

— Differential privacy is a quite recent notion that tries to formalize
this requirement



Privacy Mechanisms for Databases

* Non-interactive mechanisms
— Database publishes a sanitized dataset

— Researcher asks arbitrary queries on the sanitized
dataset

Generalization
Suppression
Sampling

Researcher
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k-Anonymity [1]

* Each person contained in the database cannot
be distinguished from at least k-1 other

individuals whose information also appear in
the released database
Race Birth | Gender 71P Problem

t1|Black 1965 11 02141 |short breath

t2|Black 1965 m 02141 [chest pain

13(Black 1964 f 02138 |obesity

t4|Black 1964 f 02138 [chest pain

tS|White 1964 m 02138 |chest pain

t6| White 1964 m 02138 |obesity

t7|White 1964 m 02138 |short breath

[1] L. Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557-570, Oct.



k-Anonymity - Limitation

* Does not
values lac

orovide privacy when sensitive
< diversity

Non-Sensitive Sensitive Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition Zip Code| Age | Nationality Condition
1 13053 | 28 Russian Heart Disease 1 130%% | < 30 * Heart Disease
2 13068 | 29 | American Heart Disease 2 130%%* | < 30 * Heart Disease
3 13068 | 21 | JTapanese || Viral Infection 3| 130%* | < 30 i Viral Infection
4 13053 | 23 | American || Viral Infection 4 130%* | < 30 Viral Infection
5 14853 | 50 Indian Cancer 5 1485% | > 40 i Cancer
6 14853 | 55 Russian Heart Disease 6 1485% | > 40 * Heart Disease
7 14850 | 47 | American | Viral Infection 7 1485% | > 40 # Viral Infection
8 14850 | 49 | American || Viral Infection 8 1485% | > 40 Viral Infection
9 13053 | 31 | American Cancer 9 130%% 3% Cancer
10 || 130533 | 37 Indian Cancer 10 || 130%* 3k ® Cancer
11 || 13068 | 36 | Japanese Cancer 11 || 130%* 3 * Cancer
12 || 13068 | 35 | American Cancer 12 || 130%% 3% * Cancer
(a) (b)

(a) A hospital records dataset

(b) The 4-anonymous version of the same hospital records dataset

An
equivalence
class



l-diversity

* An equivalence class has ¢-diversity if there are at
least £ well-represented values for the sensitive

attribute

* A database has ¢-diversity if every equivalence
class has £-diversity

ZIP Code | Age | Salary | Disease

1| 476%* 2% 3K gastric ulcer

2 | 476%% 2% 4K gastritis

3| 476%* 2% 5K stomach cancer

4 | 4790% > 40 | 6K gastritis

5 | 4790% > 40 | 11K flu

6 | 4790% > 40 | 8K bronchitis
476%% 3* 7K bronchitis

¢ 476%* 9K pneumonia

9 | 476%% 3* 10K stomach cancer

A 3-diverse hospital records dataset

[1] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. ACM Trans. KHO\(I?IL
Discov. Data, vol. 1, no. 1, Mar. 2007



l-diversity Limitations
» {-diversity does not consider overall

distribution of sensitive values

» {-diversity does not consider semantics of
sensitive values



t-Closeness

* An equivalence class has t-closeness if the
distance between the distribution of a
sensitive attribute in this class and the
distribution of the attribute in the whole table
is no more than a threshold t

* Atable has t-closeness if all equivalence
classes have t-closeness

N. Li and T. Li. t-closeness: Privacy beyond k-anonymity and I-diversity. IEEE 23rd Intl Conf. on Data Engineering (ICDE), 2007



Privacy Mechanisms for Databases

* Interactive mechanisms
— Researcher directly asks queries to the database

— Database can choose to answer truthfully or answer
with noise

— Auditor may keep track of all the queries pose to the
database and deny queries

Researcher
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Defining Privacy for Interactive
Mechanisms

e After learning the answer to a private query
one should have no extra knowledge about

any individual in comparison with the earlier
situation

* Hard to achieve if we want the answer to have
any utility
— We must allow the leakage of some information

— We can only demand a bound on the extent of
leakage



Methods to Release Statistics

* Large query sets

— Disallows queries about a specific individual or small set of
individuals

— But, how about the below queries?
« “How many people in the database have the sickle cell trait?”

« “How many people, not named X, in the database have the sickle cell
trait?”

Yes
Yes
No
No
No
Yes

No

N < X O o o >»



Methods to Release Statistics
 Query auditing 1st year Sensitiv
— Keeps the query history to PhD e value
determine if a response would be Ben v 1

disclosive M
— Computationally infeasible Bha N M 1
— Refusal to respond to a query may los Y M 1
itself be disclosive
Jan N M 2
° Example: Jian Y M 2
— Max sensitive value of males? lie N M 1
=2 Joe N M 2
— Max sensitive value of 15t year
PhD students? Moh N M 1
=>3 Son N F 1
— Xi: only female 15t year PhD :
student Al Y F >
» Sensitive value of Xi: 3 Yao N M 2
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Methods to Release Statistics

* Subsampling

— A subset of the rows is chosen at random and
released and statistics are computed on the
subsample

— Appearing in a subsample may have terrible
consequences
* Every time subsampling occurs some individual suffers
* |nput perturbation

— Data or the queries are modified before a response is
generated

— Repeating the same query yields the same answer

— Generalization of subsampling (has the same
disadvantage)



Methods to Release Statistics

 Randomized response

— Respondents to a query flip a coin and, based on the
outcome they decide between honestly reporting a value
and responding randomly

— Privacy comes from the uncertainty of how to interpret a
reported value

* Adding random noise to the output

— If done naively this approach will fail

* E.g., if the same query is asked repeatedly, then the responses can
be averaged, and the true answer will eventually emerge

— Cannot be fixed by recording each query and providing the
same response each time a query is re-issued
» Syntactically different queries may be semantically equivalent,

and, if the query language is sufficiently rich, then the equivalence
problem itself is undecidable



Problems About Naive Noise Addition

Theorem: Let M be a mechanism that adds noise bounded by
E. Then there exists an adversary that can re-construct the
database to within 4E positions (Dinur and Nissim 2003)

Example: Consider a database of n entries

— Adding noise with magnitude always bounded by n/401 is
blatantly non-private against an adversary that can ask all 2™
possible queries

* Query all the possible subsets of the database

— Adversary can construct a candidate database that agrees with the
real database in 99% of the entries

Another result: Noise of magmtude 0(\/1’1) is blatantly non-
private against a series of n log?n randomly generated
queries (Dinur and Nissim 2003)

(Hard to Achieve) Goal: Generate a noisy table that will
permit highly accurate answers to be derived for
computations that are not specified at the outset
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Dalenius’ s Desideratum (1977)

Tore Dalenius, statistician
Articulated a privacy goal for statistical databases:

“anything that can be learned about a respondent
from the statistical database shguld be learnable
without access to the database

Many papers in the literature attempt to formalize
Dalenius goal by requiring that
— the adversary’ s prior and posterior views about an

individual (i.e., before and after having access to the
statistical database) shouldn't be too different or

— that access to the statistical database shouldn't change the
adversary's views about any individual too much

But, if the statistical database teaches us anything at
all, then it should change our beliefs about individuals



Differential Privacy [1]

* A new privacy goal: minimize the increased risk to an
individual incurred by joining (or leaving) the database
— Move from comparing an adversary’ s prior and posterior
views of an individual to comparing the risk to an

individual when included in, versus when not included in,
the database

— There are attempts to weaken this definition to increase
utility (e.g., membership privacy)

 Motivation: A privacy guarantee that limits risk
incurred by joining therefore encourages participation
in the dataset, increasing social utility

* Differential privacy: privacy-preserving statistical
analysis of data

[1] C. Dwork. Differential Privacy. ICALP, 2006



Differential Privacy

e Basic philosophy: instead of the real answer
to a query, output a random answer, such that
by a small change in the database (someone
joins or leaves), the distribution of the answer

does not change much



Query #1
avg blood sugar level
of the group?

Example

Query #2
avg blood sugar level
of female members?

Differentially private approach:
let’s add some noise of UN1 T (-

Alice 4.2 Alice 4.2
Bob 5.9 -
Cathy | 5.2 Cathy | 5.2
Diana 6.9 Diana 6.9
Ellen 5.7 Ellen 5.7
Avg: | 5.58 Avg: | 5.50

Blood sugar level of Bob?}
= 5.9

[5*5.58—4*5.5

Alice 4.5
Bob 5.1
Cathy | 4.41
Diana 6.2
Ellen 5.7
Avg: 5.23
Err. ~7%

2,2)
Alice 3.0
Cathy 3.7
Diana 7.5
Ellen 7.5
Avg: 5.46
Err. <1%

95*5,23-4%*%5,46

= 4,3

{Blood sugar level of Bob?}

Figure: Gabor Gorgy Gulyas

Err. ~27%
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Differential Privacy - Definitions

D: The set of input databases
R: Output space of the query

F: Query function
F:D—->R
d: Distance function on the set of databases
Neighboring databases: Pairs of databases
(D, D") differing only in one row (e.g.,
individual)
d(D-D’) =1



e-Differential Privacy — Formal Definition

* LletD be a set of databases with distance
function d and an image set R. We call a
randomized function M &-differentially private
if forall D, D, € D withd(Dy,D,) <1 and
forall C € R we have

Pr(M(D,) € C) < exp(¢) - Pr(M(D,) € C)



e-Differential Privacy

* Ensures, that even if the adversary knows
each record in the database except for the
record of a person x, he cannot learn much
about the record of x

* Guarantees a strong protection against the
adversary learning information based on
others’ data and the output



Differential Privacy — Weaker Notion

* Approximate differential privacy:

* LletD be a set of databases with distance
function d and an image set R. We call a
randomized function M (¢, 6)-differentially
private if for all D, D, € D with d(D{,D,) <
1 and for all C € R we have

Pr(M(D,) € C) < exp(e) - Pr(M(D,) €C) + 6



Achieving Differential Privacy

 Output Randomization

* Add noise to the answer of a query such that

— Answer does not leak too much information about
the database

— Noisy answers are close to the original answers

Query

< | WQ

' %
. >

Researcl;nfr

&

Figure: Ashwin Machanavajjhala



Laplacian Noise

e Qutput randomization can be implemented by adding
noise drawn from some distribution

* Add noise from a Laplacian distribution

Query q

Laplace Distribution — Lap(A)

1 0.2 |-
P(MIA) = —exp(=Inl/A) o

0 |
Figure: Ashwin Machanavajjhala 10 -8 6 4 -2 0 2 4 6 8 10




Why Laplace Noise? - A\

The Laplace distribution with parameter A,
denoted Lap(A), has density function P(n|A) =

%\exp(—hﬂ/}\) with variance 2A?

— Taking A = 1/¢ the density at 1 is proportional to e €Ml

This distribution has highest density at 0 (good for
accuracy)

For any n,n' such that |n —n'| < 1 the density at
n is at most e® times the density at n’, satisfying
the differential privacy requirement

It is symmetric about 0 and has a heavy tail
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How Much Noise for Privacy?

* Selecting ¢

— The parameter ¢ is public, and its selection is a social
guestion

— Selection of € by Cynthia Dwork:

* “We tend to think of € as, 0.01, 0.1, or in some cases, In2 or
[n3”

— Smaller € means better privacy
— But, what about the utility?

* Sensitivity of a Query (Dwork et al., TCC 2006)

— If the sensitivity of a query is S, then the following
guarantees e-differential privacy:

A=S5/¢
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Sensitivity of a Query — S(F)
* For any two neighboring databases (D,D")
S(F) = max||F(D) — F(D)|

* Sensitivity of counting queries:

— The number of elements in the database that have a given
property P

— By adding or deleting one element of the database, F can
change by at most 1

— S(counting) = 1
e Sensitivity of histogram queries:
— Suppose each entry in d takes values in {c1, c2, ..., cn}
— Histogram(d) = {my, ..., ma}
« mi= (# entries ind with value c:)

— S(histogram) = 2
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Sensitivity - Exercise

* Consider a database of n numbers in which
each entry is an integer from the set [0,100]

e Sensitivity of mean?
— 100/n

e Sensitivity of median?
— 100



Differential Privacy — Proof (1)

* Theorem: Adding noise drawn from a Laplacian distribution
guarantees e-differential privacy if A = S(F) /¢

* Proof:

letD = {x,x,,..,x,} & D ={y,x,, ..., x,} be 2 inputs
databases

Let F be a query with sensitivity S(F)
— F(D) =F(x1,x3, ..., xp)=a F(D') =F(y1,%x3,...,Xp) = b
— |la—=b| £ S(F)

Let be 0 = a + 7n the perturbed output for F (D)

— nissampledi.i.d from Lap(S(F)/¢)
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Differential Privacy — Proof (2)

| (Pr(F(D) = o)) B (Pr(n =qa— 0))
og = log

Pr(F(D') = o) Pr(n =b — o)
i Pr(n = a — o) i exp(—|a —o|/2)
) "g(Prm =b - o>> -8 (exp(—w - ow))
~la—o| [|b-—o|
-1
<|a—b|SS(F)S£

A A



Composability

* F;(D) — guarantees some privacy definition
with parameter &

* F,(D) — guarantees some privacy definition
with parameter ¢,

* Then releasing both F; (D) and F, (D) satisfies
the same privacy definition with parameter

f(&1,&2)



Composability of Differential Privacy

* Theorem: If algorithms F;, F5, ..., F;, use
independent randomness and each F; satisfies
g;-differential privacy, respectively. Then,

outputting all the answers together satisfies
differential privacy with

£=£1+£2+...+£k



When Output Perturbation Doesn’ t
Make Sense

 What if we have a non-numeric valued query?

— “What is the most common eye color in this
room?”

* What if the perturbed answer isn’ t almost as
good as the exact answer?

— “Which price would bring the most money from a
set of buyers?”



Example: Apples for Sale

$1.00

$1.00

$1.00

$4.01

Set the price of apples at $1.00 for profit: $4.00
Set the price of apples at $4.01 for profit $4.01

Best price: $4.01

2nd best price: $1.00

Profit if you set the price at $4.02: SO

Profit if you set the price at $1.01: $1.01 =



Exponential Mechanism [1] - Overview

* Generalization of e-differential privacy
* Fora query F on a dataset D:

The exponential mechanism & takes a score
function g, a parameter € and does the
following:

— E(D, q, €)= output r with probability

proportional to exp (iq;;(D,r))

— qr(D, 1) is the score function for query F
— A, is the sensitivity of the score function g

[1] F. McSherry and K. Talwar. Mechanism design via differential privacy. 48th Annual Symposium on Foundations of Computer Science, 2007



Score Function

* The score functiongr: DX R - R

corresponding to function F determines how
good a given output is for a given input

* qr(D,r) € R means the value of output r on
input D

— Intuitively it means how closeis F(D) tor

* Higher values mean better result
OPTr(D) := max{qr(D,r) : v € R}



Score Function — Examples

e If a function takes its values from R¥, then
gr(D,7) = —||F(D) — 7||is a natural score

function
—1]. || is a norm on R¥
= counting query
—qr(D,7) = —|F(D) — 7|
' =average
—qr(D,7) = —|(Xxepx)/|D| — 7|



Sensitivity of Score Function

* Sensitivity of the scoring function gr:

Ag = max |gr(D,7) — qp (D', 7)|

* The sensitivity tells the maximum change in

the scoring function for any pair of datasets
D,D’ suchthatd(D,D’) £ 1

* |ntuitively, it tells how large can be a change in
the “goodness” of an output after an
elementary change in the input database



Exponential Mechanism

* An exponential mechanism &€ belonging to a query F
with score function gg gives an output r with the
following probability on an input database D

E. D, r
exp (550

£.qp(D,s)
ZSER exXp ( quq )

Pr(r) =

* |dea: Make high quality outputs exponentially more
likely at a rate that depends on the sensitivity of the
quality score (and the privacy parameter)
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Privacy of Exponential Mechanism

* Theorem: The exponential mechanism

E(D, qg, €) corresponding to a function F: D —
R, with score functiongr : D X R — R gives € —
differential privacy

* Proof:
Fixany D,D’ € Dwithd(D,D’) < 1landanyr € R
Let A, be the sensitivity of score function gp

Ag = repaX, |gr (D, ) — qp(D’, 1)



Privacy of Exponential Mechanism - Proof

orp (£552.7)
)

Pr(E(D, qr, €) = 7] (ZSER exp

PF[E(D,, qr, 8) — T]
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Privacy of Exponential Mechanism - Proof

E. D, r
exp (29557

)

E(QF (D' T) —dqr (D’,T))

|

E. D', r
exp (205,

o |

2,

|

)

IAWS
< exp E
q

Y.ser XD (8' q’;(ADq,’ S)) ) Y cr EXP (5(‘11: (D',s) + qgglz, s) —qr(D,s))
Zser eXP (E' ‘I;g’j» S)) Yser €Xp (8' qgglj» S))
D,s)+ A
Bser EXP (E(qF( 22 q)> (eXp (%) Y.ser €XP (E(qFZ(AI?z’ >
qr (D, s) - £.qr(D,s)
2.ser €XP (5 quq S ) YiseR exp( gAq )

)

)@
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Privacy of Exponential Mechanism - Proof

* Using * and *x*:

Pr[E(D, qr, &) =]
p:[e(p',zz,gg) - :] = exp (%) 2P @

=(exps




Utility of Exponential Mechanism

* Probability of obtaining a highly suboptimal output

is exponentially small

* Theorem (Gupta et al., 2010): Let R be finite, and
r*=&(D,qp, ). Let also Rypr (D) be the set of

optimal outputs for input D such that

D: Ropr(D) ={r €R : qr(D,r) = OPTz(D)} =

o

R

2
Pr|qr(D,r*) < OPTr(D) — — (log(
€ [Ropr|

)+

< et

J

Remember: OPTr (D) := max{qr(D,r) : v € R}
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Utility of Exponential Mechanism

* Proof:

OPT (D) ZA(I ( lRl >+t>
X = ——1 1 lo
F e \ “5\1Roprl

Prigr(D,r*) < x]

Prlgr(D,7") < x] < Pr(qr(D,r*) = OPTr(D)]

> Replace x

EX
j |R|exp(_2Aq) _( IR| )exp(_log( IR| )_t>
= cOPT-(D)\ \|R R

|R0PT| EXp ( ZAP;I( )) | 0PT| | 0PT|

IR Roprl\ _, _,
= et=c¢
IRopr] IR
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Utility of Exponential Mechanism

* Theorem:
2A R
elan(0.r 2 08102 -2 o) ) <o~
¢ Corollary: Ropr = 1 by definition

Pr [qF(D,r*) < OPTz(D) — %(logﬂRD + t)] <et
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Exponential Mechanism - Examples

“What is the most common nationality?”

— Suppose there are 4 nationalities

— R ={Chinese, Indian, American, Greek}

— |R| =4

qr (D, nationality) = # people in D having that nationality
— Sensitivity of g is 1.

OPTg (D) = nationality with the max score

2A
Pr [qF(D,r*) < OPTr(D) — - (log(|R]) + t)] <et

Exponential mechanism will output some nationality that is
shared by at least K people with probability 1 — e™>(= 0.95)

K > OPTz(D) - 2(log(4) + 3)/e = OPTz(D) - 6.8/¢
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Exponential Mechanism - Examples

* “What is the most common eye color in this
room?”
— R={Red, Blue, Green, Brown, Purple}

© K > OPTp(D) — X522 < 0PT,(D) — 7.4¢

— With probability 1 — e™3(= 0.95)

* Independent of the number of people in the
room

* Very small errorif nis large



Summary

Differential privacy:
— Strong adversary (who may know exact information about all but one
individual in the data)

— Adversary can’ t distinguish between two worlds with different values
for an individual (or if an individual is in the table or not)

— Satisfies composability

Adding noise from a Laplace distribution guarantees differential
privacy

Exponential mechanism can be used to ensure differential privacy
when range of algorithm is not a real number

Every differentially private algorithm is captured by exponential
mechanism

— By choosing the appropriate score function
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